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Abstract

The ultimate mechanical properties of polymers, assuming

perfect morphology, will be limited by the mechanical properties of a

single, ideal polymer chain. Previous calculations of polymer chain

moduli using semi-empirical (SE) quantum chemistry methods have

resulted in modulus values much higher than experimentally measured.

This study investigated the error in the calculated inherent to the method

of calculation by comparing SE results for C-C bond potentials in two well

characterized polymers, polyethylene and polydiacetylene. It was found

that the SE calculation systematically overpredicted bond stiffness in these

polymers by approximately 25% to 30%. This is the upper limit on the

modulus overprediction, depending on the importance of bond exten-

sion/compression (as compared to other deformation modes) in the overall

deformation of the polymer chain. ,Jt is believed that this discrepancy is

caused in part by the omission of bond stiffness information in the

parameterization of the SE method, and in part by the omission of electron

correlation in the calculation (Hartree-Fock Limit).
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I INTRODUCTION

The wave mechanics formulation of quantum theory derived by Erwin

Schrodinger in 1926 satisfied the three fundamental requirements of a good

scientific theory: agreement with and explanation of existing experimental

data, and prediction of phenomena which were confirmed in subsequent

experiments. The power of wave mechanics is tempered by its

fundamental limitation, that analytic solutions for wave functions and

energies can only be obtained for atoms with symmetric, central Coulomb

potentials, namely atomic hydrogen (and one-electron ions). One could

argue that being able to describe over 99% of the known matter in the

universe is sufficient. However, since the remaining 1% includes

6-electron atom based humans who breathe 18-electron molecules, there

was sufficient motiuation to develop approximate methods to extend

Schrodinger's theory to multi-electron systems.

We'll consider two quantum-based approximations, both of which rely

on the Hartree-Fock / self consistent field (SCF) method. The ab-initio

implementation of the SCF makes few simplifying assumptions, and

provides the best agreement with experiment. However, ab-initio methods

are computationally expensive and impractical for all but fairly simple

systems (roughly fewer than 10 non-hydrogen atoms) even on current state-

of-the-art supercomputers. Another implementation of the SCF method is

called the semi-empirical (SE) approach because it relies partly on

experimental data from atomic spectra. The main difference between ab-

initio and SE methods is that some of the electron-electron interaction

1



D

integrals are replaced by a set of parameters which have been selected to

D provide the best agreement (minimum least squares error) to equilibrium

molecular properties of some large set of test compounds. SE results have

poorer agreement with experiment than ab-initio results, but the

parameterization decreases the computational cost so that largei systems

(up to approximately 50 non-hydrogen atoms) can be readily calculated.

However, SE methods are limited to those elements which have been

parameterized. A third method, known as molecular mechanics, is based

on classical mechanics and has been used on very large systems (up to

100,000 non-hydrogen atoms). Application of molecular mechanics is

limited to situations where system-specific interaction potentials, usually

atom-pair potentials, have been measured. Although this is a non

quantum-based method, molecular mechanics provides excellent

agreement with experiment because the measured potentials represent the

net result of all the physical processes involved, however small (i.e., makes

0 no approximations). The accuracy of the results depends directly on the

experimental accuracy. These three approaches are complementary,

providing access to different (not orthogonal) parameter spaces.

The semi-empirical method has recently been applied to calculate

mechanical properties of polymers away from equilibriuml, 2 . In these

calculations, an infinite, ideal polymer is simulated by calculating a

molecule composed of one or more monomer repeat units (a cluster)

specified with periodic boundary conditions. The number of repeat units in

the cluster is determined by the conjugation length in the polymer, i.e., the

2



cluster must be long enough so that its ends are electronically isolated. The

minimum energy geometry of the cluster is calculated, with the overall

cluster length specified as a variable which is optimized. This length is

increased ( or decreased) and then held fixed, and the rest of the cluster

* geometry is optimized under this constraint. The minimum heat of

formation of the cluster is calculated for a range of cluster lengths,

generating - restoring potential for the cluster. The second derivaive of

this potential is the effective force constant for the cluster, from which the

polymer Young's modulus, stiffnes-, per unit area, can be calculated. The

modulus values calculated using this procedure are significantly higher

than experimental measurement. There are two possible reasons for this

result: measurements are made on bulk materials, which deviate from the

ideal structure simulated in the calculations (ultimate modulus vs. practi-

cal modulus), and/or the semi-empirical method parameters are not valid

away from the conditions for which they were derived.

* The gonl of this thesis is to perform a critical assessment of the

applicability of the semi-empirical (SE) quantum approximdtion for the

calculation of polymer mechanical properties away from equilibrium, and

to bound the accuracy of the calculation of molecular bond stiffnesses at

equilbrium. The non-experimental parameters used in the SE methods are

obtained by adjuLng a set of initial ostimates of the rarameters for each

element to minimize the least squares error in reproducing various

molecular properties. In the approximation used in this study, the

parameters were optimized to reproduce gas-phase, equilibrium, 297 K

3
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values of heats of formation, dipole moments, ionization potentials, and

molecular geometries, none of which depend sensitively on the derivatives

of the intra-molecular potentials. The modulus calculation involves a

series of SE calculations in which one parameter, the length of the cluster

along the polymer axis, is fixed at non-equilibrium val-tes. All other

cluster properties, bond angles, bond lengths, are adjusted away from their

equilibrium values to minimize the heat of formation under this constraint.

Hence the modulus calculation involves extrapolations of non-equilibrium

properties based on equilibrium data which provide no guidance for the

direction this extrapolation, i.e., derivatives of the intra-molecular

potentials . Therefore, the range of displacements away from equilibrium

for which SE calculations may be accurate is undefined. The equilibrium

bond stiffness is the second derivative of the bond potential at the

equilibrium bond length. These data were not used to anchor the SE

parameterization, thus the accuracy of bond stiffnesses predicted by a SE

calculation requires investigation.

This assessment of the SE approach will be performed by comparing

calculated and observed properties of polyethylene (PE) and polydiacetylene

(PDA). These polymers were selected because they possess simple backbone

structures, both have been well characterized experimentally, and they can

be made in crystalline form which removes much of the morphological

uncertainty in comparing the experimental results to the calculations.

Real polymers are at best semi-ordered, have a random chain orientation,

and have structural defects; these characteristics limit bulk mechanical

4



strength and modulus rather than the inherent chain properties.

The specific properties for which comparisons will be made are

summarized in Table 1. Each property provides a different level of

comparison with the SE method. The equilibrium geometry is one of the

four properties against which the SE method was compared and gives an

indication of the baseline error involved. Because polymer modulus is the

net result of many deformations in the repeat unit (bond extension, bond

angle bending, torsion angle twisting), modulus alone is not a sensitive test

of the SE method. In order to determine the effect of the SE method on the

calculated modulus, one must compare SE predictions for specific

components within the repeat unit with experiment. In order to obtain

information on specific bonds within the molecule, one needs to examine

spectroscopic data, the energy shift of Raman and IR active lines as a

function of strain. Spectroscopy provides information on second and third

derivatives of bond potentials generated by the SE paramaterization, which

describe the bond strength. In this study, comparisons will concentrate on

backbone vibrational modes of PE and PDA which show the largest strain

sensitivity. The strain-dependent intra-molecular potentials calculated by

the SE method will be directly compared with empirical Morse potentials

that have been shown to agree with the spectroscopic data on the polymers.

5



TABLE 1

SUMMARY OF COMPARISONS

PROPERTY PE PDA

Equilibrium Geometry
Crystallographic Results * *
Ab-Initio Calculation * *
Substituent Effect *

Modulus
Bulk Measurements * *
X-Ray Simulation *
Substituent Effect a *

Olig -ner Comparison *
Spectroscopy

Strain Dependent Shift * *
Molecular Potentials *
Morse C-C Comparison * *
Simple Molecule C-C * *
Empirical Force Constants * *

a Substituents in PDA refer to the fact that while PDA has a simple carbon
backbone, it is synthesized with various large chemical groups bonded to
the backbune. Calculations were initially performed with hydrogen atoms
bonded to the backbone to make the calculations simpler.
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In this thesis I will first outline the Hartree-Fock method and the

additional approximations made in the semi-empirical approaches. The ab-

initio and semi-empirical methods have been exhaustively documented in

the scientific literature, and the reader will be directed to appropriate

references for complete treatments. An outline of the approaches is

illuminating because it lays the foundation for the ultimate applicability of

the semi-empirical method to the question at hand. The accuracy of the SE

formulation used in this work to its calibration set of compounds will be

discussed, as well as the procedure used to obtain the data from which the

polymer mechanical properties is obtained. Next, a brief description of the

pertinent mechanical properties and the various techniques by which they

are measured will follow, as well as the calculation of these properties from

the SE results. The results of the calculations on PE will be presented, as

well as comparisons with experimental results. The results of the

calculations on PDA will then be presented. Following this, an analysis of

the results and a discussion of the implications of the results to the central

question of this thesis, the appropriateness of the SE technique to the

calculation of polymer mechanical properties away from equilibrium, will

be presented. These comparisons provide evidence that SE calculations

systematically overpredict the modulus by 20% to 25%.

7



II APPROXIMATE MOLECULAR STRUCTURE CALCULATIONS

Ab Initio Method

The Schrodinger wave equation for atomic hydrogen, the archetypal one-

electron system, describes the motion of the electron in the Coulomb

potential of the nucleus. The wave equation is an eigenvalue problem of the

form

H I'>=E IT> (1)

where H is the Hamiltonian operator. For atomic hydrogen, H is simply

v2H = . +1

2 r (2) (Atomic Units)

V2  1

where 2 is the kinetic energy operator and r is the spherically

symmetric Coulomb potential of the nucleus. This equation is separable in

spherical polar coordinates, and the eigenfunctions are products of

spherical harmonics in the angular variables E) and 0 and associated

Laguerre polynomials in r. The wavefunctions take the form

Tn 1 m (r, E), 4) = Rnl(r) Wlm(0) eimo (3).

The indices arise from the allowed values of the separation constants, and

the different solutions describe allowed discrete states for the hydrogen

electron. 3 The wavefunction corresponding to an allowed combination of

the indices n,l,m is referred to as an orbital which the electron is said to

occupy. One follows the same procedure to solve the wave equation for a

system of interacting electrons and nuclei, except that separable solutions

8



cannot be obtained. The Hamiltonian for a system of n electrons and M

nuclei is

n V 2 M nVM n M n

=i1 , - 2 Y I I _ZA_ + _L + ZA ZB
HT=2 -

i=1 A=1 i=1 A=1 RiA i=1 j>i A=1 B>A RAB

(4)

I II II IV V

I Kinetic energy of the electrons

II Kinetic energy of the nuclei

III Coulomb potential between electrons and nuclei

I V Electron-electron repulsion

V Nuclei-nuclei repulsion.

The wave equation for the system is

HTotal T(1,2 ...n;1,2,...M) = E~otal T(1,2 ...n;1,2,...M) (5)

where T is the wavefunction for all particles in the molecule and E is the

total energy of the system. Since each particle has three degrees of

freedom, this is a nonseparable partial differential equation in 3n + 3M

variables. 4

One now applies several approximations to simplify this problem. The

first is the Born-Oppenheimer approximation, which asserts that because

of the large mass difference of the electrons and the nuclei, the nuclei can

be considered to be fixed on the timescale of electronic motion. Thus, one

9



can initially neglect the kinetic energy of the nuclei and consider the

nuclear repulsion a constant (which does not affect the solution of the

electronic eigenvalue problem). One first solves the wave equation for the

electronic Hamiltonian, which gives the electronic wavefunctions that

depend explicitly on the electron coordinates but only parametrically on the

nuclear coordinates. After the electronic problem has been solved, the

motion of the nuclei is calculated using the average value of the Coulomb

potential generated by the electrons. Solutions to the nuclear wave equation

describe the vibration, rotation, and translation of the molecule.

The next step in the approximate solution of the multi-electron wave

equation is to seek a form of the multi-electron wavefunction from a

combination of functions which depend on the coordinates of only one

electron. The simplest way to do this is to write the total wave function as a

product of one electron wave functions

'l(1,2,3 ... n) = 01(1) 02(2)03(3) .... ON(n) (6)

The probability density function, W2, which describes the average location of

the electrons is then a product of the one electron probabilities 0j2. This

description is accurate only when the events associated with each of the

probabilities occur independently of each other. Thus, the physical model

used in this approximation is that the electron motions are independent of

each other, while in reality correlation of electronic motion is important. A

multi-electron wavefunction of this form also violates the anti-symmetry

requirement for the wavefunction which arises from the Pauli exclusion

10



prinriple. 5 A discussion of electron spin and symmetry requirements of the

wave functions is omitted here; these considerations require more complex

combinations of one electron wave functions to be used to represent the

multi-electron wavefunction. 6

Neglecting electron-electron repulsion (in addition to the nuclear

terms), the multi-electron Hamiltonian could be written as a simple sum of

one electron Hamiltonians. Solutions to the wave equation for each electron

could be obtained analytically by separation of variables, and the exact

solution to the multi-electron wavefunction would be the product of the one-

electron wavefunctions. Because the inter-electron (pairwise) repulsion

depends on the instantaneous coordinates of two electrons, the exact

solution cannot be expressed in a separable form. However, by considering

the interaction of an electron i with all the other n-1 electrons as an

interaction with an average, effective potential, Fock7 was able to derive

approximate one-electron Hamiltonians based on the earlier work of

Hartree 8. The Hartree-Fock equations have the form:

F T= [Hcore + (Xj (2 J- NO] Tij = Yj Ejj j i=1,2,3,...n (7)

Here F, the Fock operator, may be considered an effective one-electron

Hamiltonian for the electron in the molecular environment, and its various

terms have simple physical interpretations. Hcore is the one-electron

Hamiltonian for an electron moving in the field of bare nuclei. The term

2Jj, with j not equal i, is the averaged electrostatic potential of the two

electrons (of opposite spin) in the orbital 'j . The exchange potential Kj

11
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arises from the indistinguishability of fermions.

In order to calculate the wavefunctions using the Hartree-Fock

equations, one needs to calculate the average potential from n-1 electrons in

the molecule, which is determined by their locations, which is described by

their wavefunctions, i.e., you need to know the answer to calculate the

answer. The general process for solving the Hartree-Fock equations is an

iterative process. First, one assumes a set of trial solutions, 'P1', 2',... TPa'

which allows computation of the coulomb and exchange operators and

thus a first approximation to the Fock operator. The eigenfunctions of this

operator are used as a second approximation to the wavefunctions, and the

procedure is repeated until the Fock operator no longer changes (to a given

tolerance). These wavefunctions are said to be self consistent with the

*D potential field they generate, so this procedure is known as the self-

consistent field (SCF) method.

The choice of the trial wavefunctions is important to the solution. The

most commonly used choice is to approximate the Hartree-Fock

wavefunctions with linear combinations of atomic orbitals (LCAO). Since

the atomic orbitals (Eqn 3) are orthonormal functions, this is a finite

generalized Fourier series expansion of the molecular orbitals. This

selection has the further advantage in aiding the interpretation of the

* results since the molecular properties can now be related to those of the

constituent atoms. The atomic orbitals used to construct the molecular

orbitals are called a basis set. Better representations of the molecular

12



orbitals can be obtained by including more terms in the expansion, a larger

basis set, though this increases the computation time. In practice, the

atomic orbitals themselves are approximated by a series expansion because

the actual atomic wavefunctions are computationally difficult to evaluate.

A common choice is to use Gaussian functions; strictly speaking this is not

a proper choice because Gaussians are not orthogonal functions; however,

the basis set can be orthogonalized with an additional operator.

When you start adding up all the terms in the molecular orbitals it

becomes apparent why ab-initio Hartree-Fock calculations become complex

very quickly. For example, consider the diatomic molecule HF. One needs

six atomic orbitals to represent each molecular orbital . If one uses 6

Gaussian functions to represent each atomic orbital, one would have 36 X

36 X 6 complicated integrations to perform on each iteration of the SCF

procedure. In practice, many of these integrals do not need to be

recalculated on each iteration,and can be stored on disk; however, a high

level calculation on a fairly simple system can easily consume gigabytes of

disk space. There are many other considerations that make the ab-initio

implementation of the Hartree-Fock method computationally expensive,

both in terms of CPU time and disk space, which are omitted from this

discussion for the sake of brevity. The net result is that while ab-initio

calculations give very good results (when compared to experiment), the

computational cost is prohibitive for all but fairly small molecules.

It should be noted that because the Hartree-Fock method explicitly

neglects electron correlation, the result of a Hartree-Fock calculation, even

13



with a basis set of infinite size, will always be higher than the true

minimum of the system. Inclusion of electron correlation tends to decrease

the calculated bond stiffness, which implies that even ab-initio Hartree-

Fock calculations of mechanical properties may be systematically high.9,1o

0 A complete discussion of the theory of ab-initio Hartree-Fock method is

found in Szabo and Ostlund.6

Semi-Empirical Method

In order to enable the calculation of larger molecules, additional

approximations are required than those used in the ab-initio method. The

most difficult and time consuming procedure of the ab-initio method is the

computation of the large number of two electron (repulsion or exchange)

integrals. One can argue from physical considerations that many of these

integrals should be very small, a fact which can be verified by doing the

calculation. One important class of electron-electron interactions that is

small is the overlap between different atomic orbitals describing the

molecular orbital of an electron, e.g., the overlap between a 1S and 2P

orbitals from the same atom is essentially zero. The overlap between two

different atomic orbitals describing the molecular orbital of an electron is

referred to as differential overlap (DO). If the atomic orbitals originate from

the same atom, it is called monatomic differential overlap: if from different

atoms it is called diatomic differential overlap. By assuming differential

overlap to be negligible, a large number of integrals involved in the Fock

operator can be set to zero (Neglect of Differential Overlap). This

14



assumption formed the basis for the first semi-empirical method, the

complete neglect of differential overlap (CNDO) method introduced by Pople,

Santry, and Segalil. In addition to NDO, only valence electrons are treated

explicitly, while inner shell electrons are treated as part of the nuclear

core, modifying the nuclear potential in the core Hamiltonian (Hcore).

Additional based semi-empirical methods include intermediate neglect of

DO (INDO), modified intermediate neglect of DO (MINDO), modified

neglect of DO (MNDO), etc. 11

Another essential simplification in the SE method is the treatment of

interaction integrals in the Hamiltonian as element specific parameters.

The number of parameters required to describe an element corresponds to

the number of interaction terms in the approximate Hamiltonian used.

Examples of parameters would be the one-electron energy of an atomic

orbital of an ion (bare nucleus + core electrons) resulting from the removal

of all valence electrons, an atomic Slater orbital exponent, or the exponent

in a gaussian describing core-core repulsion. The name semi-empirical

arises because some of these parameters are obtained from experimental

data.

Within the SE approach, the self-consistent field algorithm is used to

calculate the molecular orbitals while the calculation of a large number of

complicated integrals in the ab-initio method is replaced by a relatively

small lookup table. Thus a semi-empirical calculation is simplified, as is

shown in Fig 1, by a comparison of the ab-initio (la) and SE (1b) approaches

which is reproduced from Clark12. The combination of greatly reduced

15
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computation times and memory reqairements means that much lrger

systems can be treated by SF methods than by ab-initio techniques.

Moreover, the accuracy of the SE methods in calculating heats of formation

compares favorably on a wide range of systems when compared to moderate

level ab-initio calculations. Note, however, that this is not true for all

molecular properties. 13

The ultimate success of a semi-empirical method hinges on the validity

0 of the approximate Hamiltonian used and on the values of the parameters

used. Ideally, one would want the parameters that describe each element

to be completely independent of the molecular environment, i.e. the

parameters which describe a carbon atom in CH 4 should give results of the

same accuracy when used in CF 4. In reality, the specific molecular

environment does affect the atomic parameters. In order to make the

application of the method generic the parameters are selected to minimize

the least squares error for selected molecular properties over a large set of

molecules.

It should be noted that the use of experimental data to define some of the

parameters actually gives the semi-empirical method some advantage over

the ab-initio method. The measured quantities inhertntly contain all the

physics involved and so are not limited by the approximations used to define

a tractable Hamiltonian. A complete discussion of SE methods is presented

by Pople and Beveridge. 4

The Austin Model 1 (AM1) semi-empirical Hamiltonian (and

17



parameters) were used in the calculations in this thesis. AM1 is an

extension of the earlier MNDO/3 Hamiltonian which is known to

overestimate nuclear core-core repulsion. Thus the parameters for the

AM1 include those from the approximate Hamiltonian as well as

Gaussian exponents describing the modified core-core repulsion. Five of the

parameters were assigned values from atomic spectroscopy. The other

parameters were initially estimated and adjusted to best reproduce the

following experimental equilibrium (297 K) gas phase properties:

1. Heat of Formation

2. Dipole Moments

3. Ionization Potentials

4. Molecular Geometries.

Most of these properties used in the parameterization are obtained from

experiment, though for some molecules on which precise measurements

are impractical, the results of high level ab-initio calculations are

considered reliable enough to be used. Table 2, which reproduces Table XII

from Stewart 14 shows the average error in the calculation of molecular

geometries associated with the AM1 method. A detailed statistical

analysis of the errors associated with AM1 with respect to these four

properties is presented in ref 11. Of these benchmark properties only

comparisons with equilibrium molecular geometry will be performed in

this study.
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TABLE 2

AVERAGE ERRORS IN MOLECULAR GEOMETRIES

Geometric Number of MNDO AM1 PM3*
Parameter Molecules for

Comparison

Bond Length [A] 372 0.054 0.050 0.036

Bond Angle [Deg] 158 4.342 3.281 3.932

Torsion Angle [Deg] 16 21.619 12.494 14.875

*The PM3 Hamiltonian is a modification of MNDO which gives better
results for hypervalent compounds.

Semi-Empirical Calculations of the Electronic Structure of Polymers

While large molecules can be handled by the semi-empirical method, an

ideal polymer is an infinite chain molecule; clearly an approximation must

be made to calculate polymer properties, even within the SE approximation.

One technique is to consider a series of small molecules which are made

up of increasing numbers of the polymer repeat units, namely oligomers.

The oligomer properties will not accurately represent the polymer

properties, but one can extrapolate the results as a function of repeat units

to the infinite repeat unit result. Drawbacks to this method are that it is

time consuming and end effects will always be present in the oligomers

which are not in found in polymers. Another approach is the cluster

method developed by Perkins and Stewart.15 In the cluster method, one

performs calculation on a cluster, which is a number of polymer repeat

units. The atom at one end of the cluster interacts with the atom at the
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other end, as though it were connected in a ring. Ref 15 provides a good

discussion of how this approach for a cluster of carbon atoms reduces to

Huckel theory for benzene. Using the cluster, exact results for an infinite

molecule can be reproduced with as few as one repeat unit, provided the

repeat unit is long enough to make an acceptable cluster. The number of

repeat units required in the cluster is driven by the electron de-localization

length in the polymer; the length of the cluster must be large enough so

that any one atom does not interact with itself through the cyclic boundary

conditions. Stewart suggests that a cluster length of 10 A is sufficient for

most polymers, except those containing conjugated Pi bonds, where a

cluster length of 20 A is recommended. This was verified in this study for

PDA, where the heats of formation and repeat unit lengths were monitored

as a function of cluster size. PE has been previously calculated using the

cluster method with the MNDO/3 Hamiltonian, so that the cluster length

dependence is known. 1

Details of the Calculations

The program MOPAC version 5.0 was used with the AM1 Hamiltonian

was used in this study with the unrestricted Hartee-Fock (UHF) method. 16

The cluster method as described in ref 15 was used to simulate ideal

polymer chains. Strain dependent geometry optimizations were performed

by using the translation vector, which describes the length of the cluster

and defines the polymer connectivity, as a reaction coordinate for a series of

strain values. All MOPAC calculations were performed on a Silicon

Graphics workstation in the Polymer Branch of the Materials Laboratory at

20



WPTAFB. Ab-initio oligomer calculations were performed using the

programs GAUSSIAN88 and GAUSSIAN9017 on Elxsi and Cray supercomputers.

21



III RELATIONSHIP OF THEORY TO EXPERIMENT

Calculations of Mechanical Properties

The basic method used to determine the mechanical properties of a

poiyaaer is to measure the amount of force required to change the length of

a sample. From this measurement one obtains a stress (force per unit

area) strain (fractional change in length away from equilibrium) curve. A

generic stress-strain curve is shown in Fig 2. Several mechanical

properties, defined by the behavior of the stress-strain curve, are labelled.

The modulus is the initial slope of the stress-strain curve. The yield

strength is the amount of force at the point where the slope of the stress-

strain goes to zero,i.e., the resistance to deformation vanishes. The

ultimate streneth is the force at the point where the material physically

breaks. If one had a perfectly ordered, perfectly aligned, defect-free

crystalline polymer, the stress-strain curve measured on the bulk material

would be identical to the properties of a single polymer chain.

Straining a moleculat system, i.e., increasing or decreasing the

separation between the atoms, requires energy, so that the potential energy

of the system increases when it is constrained to a non-equilibrium length.

To a first approximation, the interaction between two atoms in a molecule

can be described as a harmonic oscillator (ideal spring). For an ideal

harmonic oscillator (H.O.), this energy is proportional to the square of the

deviation from the equilibrium separation. The force required to stretch (or

squeeze) a spring is proportional to the second derivative of the potential

energy curve with respect to position. The second derivative of a quadratic
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* Figure 2. Generalized tensile stress-strain curve for a polymer

23



potential is a constant, so the stiffness of a spring is described by a force

constant. The resistance of a material to deformation is described in terms

of its modulus, the force per unit area required to distort it from its

equilibrium length (along a specific axis), which is equal to the initial slope

of the materials' stress-strain curve. The modulus of a spring then is the

second derivative of its energy potential (force constant) times its

equilibrium length divided by its cross sectional area.

The energy potential curve of a strained molecular system can be

generated through semi-empirical calculations. First, one determines the

equilibrium geometry of the molecule by optimizing all its variables (bond

lengths, bond angles, torsion angles). Associated with this optimum

equilibrium geometry is a heat of formation. One then changes a variable

which describes the overall molecular length, e.g. increase the length by

2%, and then calculates the optimum geometry for the molecule with this

variable fixed. Clearly, the heat of formation for this strained geometry will

be higher than equilibrium. By calculating the heats of formation for a

number of such strain values one can map out the potential energy curve

for the molecule. The second derivative of this curve is the spring constant

of the molecule, which can be used to calculate its modulus (on a molecular

level, the crystal unit cell area is used for the cross sectional area). For a

polymer, one fixes the length of the cluster, optimizes the geometry of the

repeat unit and obtains the minimum energy for a particular strain. For a

polymer, this energy is an amalgam of all the various deformation modes

(bond extensions, bond angle changes, and torsion angle twists).

24
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Comparing the calculated cluster modulus with experiment is not a

sufficient test of the validity of the calculation because compensating error-

in the calculated deformation modes could combine to produce a value for

the modulus which seems "reasonable", i.e., is less than several orders of

magnitude larger than experiment.

There is a potential problem inherent with this technique: the

parameters used in AM1 were optimized to reproduce the equilibrium heat
of formation. There is no guarantee that the heats of formation are

meaningful away from equilibrium. One may have an accurate value of

the potential at equilibrium, but the optimization procedure includes

information about the quality of the energy derivatives. Because the

mechanical properties of a material depend on the derivatives of the

0 potential, in order to assess the accuracy of the calculation of a material's

mechanical properties, one must investigate the accuracy of the potentials

(and their derivatives) used to describe the molecular bonding in the

material.

A more precise description of a molecular bond is that only for small

deviations about the equilibrium length, the potential is harmonic with

displacement. At larger displacements the true anharmonicity of the

potential can be observed. In general, the potential is softer than harmonic

in tension (positive strain) and harder in compression (negative strain).

Thus the spring "constant" for a real bond is not a constant. Common

attempts to represent the anharmonicity in a real bond potential are to

include cubic or higher polynomial terms. A very good, generic fit to bond

25
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potentials is given by the Morse potential, which was originally derived as

an empirical fit to diatomic spectra. The form of the Morse potential is18

V(r) = Do (1 - e- a (r-ro))2 (8)

where Do is the dissociation energy of the bond, ro is the equilibrium

length, and a describes the curvature of the potential. A comparison of a

Morse and harmonic potentials is shown in Fig 3.

The vibrational frequency of a diatomic molecule is given by

V - 1-

2nv (9)

* where k is the force constant and g is the reduced mass of the two atoms.

For a harmonic potential, the value of k does not change so the frequency

does not change with inter-atomic separation. For a system described by an

anharmonic potential, the frequency changes with strain because the

second derivative of the poter 'ial is no longer constant. By measuring the

vibrational spectrum of a molecule one obtains the value of the second

derivative of the potential at equilibrium. Measuring the shift of the

vibrational frequencies with strain provides information about the

anharmonicity of the potential. Thus by comparing measured vibrational

shifts with those calculated by AM1 it is possible to determine the accuracy

of the calculated bond stiffness.

One can directly calculate the strain dependent potential of a single bond

in a molecule by constraining just that particular bond length and

optimizing the rest of the geometry. This proved to be very useful for

0
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Figure 3. Comparison of Morse and harmonic potentials. Both
have the same second derivative at equilibrium.
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polyethylene because Wool 19 provided a Morse potential for the C-C bond

stretch which was used to calculate the modulus. This Morse potential is

judged to be a good representation of the C-C bond because it matched both

the absolute frequencies and the strain dependent frequency shifts observed

in polyethylene.

It is known that the calculation of vibrational frequencies from the SE

(or an ab-initio) method produces results which systematically overestimate

the measured frequencies.6 This discrepancy is a result of the method used

to calculate the frequency rather than inherent in the SE method itself. The

force constant is calculated by taking the second derivative of the potential

at equilibrium. The vibrational energy levels of a harmonic oscillator are

E(v) = -Do + h co (v + -1)
21 (9)

where Do is the minimum of the potential, v is a non-negative integer, and

~d 2V(r)
SP dr 2 r=ro (10)

In equation (10 ), g is the reduced mass of the molecule. The vibrational

energy levels of a Morse potential are

E(v) = -Do+-h co(v +-) - Iv +1)2)
27c 2 2 (11)

is defined such that the anharmonic (0u + 21)2) term can never exceed the

1
harmonic ((u +-2)) term. 20 It is seen by a comparison of Eqns (9) and (11)

that the energies of the harmonic and Morse potentials will differ

28
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significantly only if u is large. This is not the case for the U=1 state as

calculated by the SE codes, or if the energy separation between the

minimum of the potential and the u=1 state is large, which occurs if p. is

small. This approximation in the frequency calculation, as well as the

neglect of electron correlation, produces systematic errors; because

comparisons are made to strain dependent frequency differences, the

* systematic error cancels out and comparisons with experimental strain

dependent frequency shifts is meaningful.

Matching vibrational frequencies and shifts is more complicated for

0 polyatomic molecules than diatomics because the normal modes of

vibration involve displacement of several atoms simultaneously (and

because the number of vibrational frequencies scales as 3n-6), hence it is

more difficult to isolate the individual bond force constants involved.

Although an ideal polymer has an infinite number of atoms, its repetitive

structure results in many degenerate vibrational modes, and so

interpretation of the spectra is tractable.

0 Measurement of Polymer Modulus

As stated before, the measurement of the bulk mechanical properties for

a polymer by obtaining its stress-strain curve does not represent the

* ultimate mechanical properties for that polymer. Fig 4 shows the

structure of a typical amorphous polymer, in which the polymer chains are

randomly oriented and twisted around each other. When one strains a bulk
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• (a)

03

(b)

Figure 4. Amorphous polymer structure (a) and idealized structure (b).
• In the ideal structure, all the chains are orier.ted along the same axis;

the only limit to bulk stiffness other than chain stiffnes3 is the presence
of chains which do not extend the full length of the sample (chain ends).
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sample of an amorphous polymer, one is addressing primarily the

strengths of the inter-chain interactions. Only those regions whose chain

axis is aligwe d with the axis of strain will resist with the chain strength.

As tre degree of order is increased in the polymer, by better aligning the

chain along one axis, the mechanical modulus of the polymer will

inc -ease. If the individual chains were perfectly aligned, the mechanical

modalus would equal the ultimate aial modulus (the transverse modulus,

however, would be minimized). In practi , "perfect" alignment can only

be obtained in a limited number of polymers, of which PDA is one which

can be polymerized in single crystal form. Mechanical properties in PDA
0

are not constrained by alignment but by crystal defects, chain ends and

other chemical imperfections. 2 1,22

The calculations of polymer moduli are performed on an ideal, infinite

single polymer chali, which simulates perfect polymer morphology and

neglects the role of interchain forces. While this scenario is unrealizable in

* q npractical sense, it is useful because it defines the upper bound for the

mechanical properties of a given polymer. Comparisons of this upper limit

for different polymers is useful because if the degree of alignment one can

obtain in processing is roughly equal for all polymers (or at least a class of

chemically similar polymers), the polymer with the stiffest /strongest chain

will make the stiffest/strongest bulk material. An analysis of the0
deformation modes can also give insight into what chemical structures

contribute most to mechanical strength Pnd stiffness.

Since mechanical measurement duCs not represent the ultimate limits
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of a polymer, other techniques are employed to make molecular level

measurements. X-ray diffraction is used to monitor the location of the 20

peak which corresponds to the chain length; in PE this is the (002) peak. (In

this study, the polymer axis will be defined as the c crystal axis.) A

calibrated force is applied to the polymer to elongate it, and the strain of the

c-axis is monitored from the appropriate diffraction peak. Under the

assumption that stress is uniformly distributed throughout the sample

(which is not always a very good assumption) one obtains a molecular

stress-strain curve, whose slope is the modulus. Since this technique

monitors molecular strain rather than bulk strain, the modulus measured

better represents the ultimate modulus of the polymer.23 Bulk PE does not

have a pure crystalline structure, so X-ray modulus measurements on PE

are very sensitive to the degree of crystallinity. The X-ray modulus of PDA

should equal the ultimate theoretical modulus because it can be

polymerized in single crystal, though defects may play a role in the

measurement. The X-ray modulus of PDA has not been reported to date.

Another method of measuring the ultimate moduli of polymers is to

derive the force constants associated with the bonds from the polymer's

spectra and calculate the effective axial deformation force constant from

them. This technique is difficult to apply in practice because it is difficult to

perform the normal vibrational mode analysis on the polymer and

deconvolve the individual force constants from the complex spectra. While

this method has no predictive capability on proposed polymers, in theory a
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force constant analysis should give the correct value for the modulus

because it is based on measured force constants. i.e.. there are no

approximations made to obtain the result. In practice, for all but simple

polymers the mode structure is so complex that researchers often used

measured values as a first guess, and then adjusted the force constants to

fit the spectra. The set of force constants obtained in the fitting in many

cases is not unique, and so the advantage of being based on measurement is

0 losi.

This discussion of mechanical properties is intended to be a generic

description. The mechanical behavior of polymers is much more

complicated, and differs greatly from polymer to polymer for very material

specific reasons. A good introduction to the mechanical behavior of

polymers is presented by Young.20
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IV POLYETHYLENE RESULTS AND DISCUSSION

Molecular Structure and Modulus Calculations

Polyethylene (PE) chains are comprised of single carbon-carbon bonds

in a planar zigzag structure, which is one of the simplest structures

possible for any polymer. Comparisons between the molecular structure

results obtained by the SE and ab-initio methods were performed on the PE

oligomer shown in Fig 5. The cluster used in the SE polymer calculations

is identical to the oligomer shown except that there are only two hydrogens

bonded to C1 and C6, the periodic boundary conditions establishing a carbon-

carbon bond at the appropriate distance and angle between C1 and C6. The

SE carbon-carbon bond distances are approximately 0.04 angstroms shorter

than the ab-initio distances. The C-C bond distance in PE, obtained from

X-ray diffraction, is 1.53 A.24 The SE bond angles are approximately 2

degrees smaller than the ab-initio results. The SE values for bond lengths

and angles are accurate to within the published uncertainly of the AM1

Hamiltonian listed in Table 2.

In both the SE and ab-initio oligomer results, bond lengths and angles

are seen to depend on the location in the molecule, with the bond lengths at

the end of the oligomer showing the largest variation (end effects). In

contrast, the SE results with periodic conditions are essentially equal

throughout the cluster, as anticipated for an ideal polymer chain.

The strain dependent heat of formation potential curve for PE is shown

in Fig 6 from -10% to +10% strain. This plot is offset by the equilibrium

heat of formation of the cluster, -38.9105 kCals/mole. The cluster's
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H H H H H H

v v V H
(C) C 2 C 4

H ' C C 5C)

Oligomer AM1 Cluster
(C ) (H)

Bond Length [A] 6HI4) 6 12)

AM1 Ab-Initio*
C1-C2 1.507 1.559 1.513
C2-C3 1.514 1.545 1.513

C3-C4 1.513 1.544 1.513
C4-C5 1.514 1.545 1.513
C5-C6 1.507 1.559 1.513

Oligomer AMI Cluster
(C6H14) (C6H12)

Bond Angle [Deg] 6 14

AMI Ab-Initio*
CI-C2-C3 111.544 112.834 111.078
C2-C3-C4 111.365 113.565 111.110
C3-C4-C5 111.364 113.565 111.119
C4-C5-C6 111.544 112.832 111,077

* Calculation performed at UMP2/6-31G

Hydrogen bond angles on terminal carbons not true to scale for the oligomer

Figure 5. Comparison of PE oligomer and cluster geometry calculated
by AM1 and ab-inition methods.
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Figure 6. PE cluster strain dependent heat of formation. The

discontinuity in the curve occurs when the cluster bends out

of its equilibrium planar geometry.
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equilibrium length is 7.488 A. The discontinuity in the curve in

compression occurs when PE deviates from a planar structure, i.e., the PE

chain bends. This deformation mode does not directly correlate to a bulk

failure mode in the polymer, however, it indicates that PE does not possess

a large, inherent compressive strength25. The PE chain has not failed in

tension up to 10% strain; again this does not correlate to a bulk polymer

property. Since PE has a planar chain structure in the calculation, the only

tensile failure mode accessible in the calculation is bond breaking. This

calculation predicts that a PE chain will not fail at a uniformly distributed

tensile strain of 10%.

The second derivative of the strain-dependent heat of formation curve is

the restoring force of the cluster. This can be obtained several ways. One

can perform a polynomial fit to the potential; then twice the second order

coefficient is the force constant at equilibrium (k). The chain modulus can

then be defined by

E kxL

A (10)

where L is the cluster length and A the cross sectional area. In this study,

the cross sectional area, obtained from the crystal structure, was taken to

remain constant (18.4 A2 24) as a function of strain (Poisson ratio of 0.0).

Klei and Stewart used a third order polynomial, which is the first order

anharmonic perturbation to a harmonic potential, to fit the potential. The

second derivative of a third order polynomial is a line, thus a cubic fit

predicts that the restoring force drops off linearly with strain. One can take
0
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the second derivative of the potential numerically and attempt to obtain the

exact strain dependent behavior of the modulus predicted by the

calculation. While the potential (Fig 6) appears smooth, random variations

in the heat of formation values requires that smoothing be used in

conjunction with the numerical differentiation. Typically, the first

derivative of the potential, the force curve, is obtained directly. The force

curve is smoothed with a fifth order Gaussian filter before the second

derivative is taken. The second derivative curve is also smoothed. A

comparison of the numerical second derivative and the second derivative

from a cubic polynomial fit is shown in Fig 7. The units of the second

derivative have been converted to SI, newtons per meter (Nt/m), in this

figure. As is seen, both procedures agree very closely at equilibrium, with

a value of 100 ± 5 Ntm.

The modulus of PE predicted by this AM1 calculation is 400 ± 20 GPa.

Reference 1, which used the MNDO semi-empirical Hamiltonian,

predicted a value of 360 GPa. This difference is consistent with the

difference in the heats of formation obtained with these different

Hamiltonians. An earlier, low level ab-initio calculation of PE chain

modulus reported a value of approximately 400 GPa.26 The reported value

for PE chain modulus, calculated and measured by the techniques

discussed previously, varies from 180 to 400 GPa. 27 The commonly accepted

value of PE chain modulus is around 300 GPa. While the AM1 value of 400

GPa is high, it is not outside the range of previously reported values.

However, a priori there is no justification to claim that the AM1 result is
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Figure 7 Comparison of second derivatives of PE heat of
formation potential. The discontinuity in the numerical derivative
results from molecular failure.
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more or less accurate than any of the others.

0 In order to investigate the accuracy of the calculation, an obvious

question is to inspect the strain dependent minimum energy geometries

and how the c-axis strain of the cluster is distributed among the various

components. The length of the cluster can increase by increasing the bond

lengths and bond angle; one would expect to observe the length of the

cluster increase by some combination proportional to the resistance of each
deformation mode. (The discussion here is limited to tension because the

experiments on PE used for comparison did not report any results in

compression.) A commonly used rule of thumb puts a ratio of 100:10:1 in

terms of the amount of force required to change a bond length, bond angle,

and torsion angle respectively. 21 One would then expect polyethylene to

deform primarily by changing the bond angles, with a smaller contribution

coming from increasing the bond lengths. (Since the equilibrium structure

of PE is planar, a change in the torsion angle is considered a failure mode.)

Figure 8 shows the relative variation of the bond angles and bond

lengths in PE under tension as a function of cluster c-axis strain. The bond

angle variation is seen to be larger than the bond length variation, but not

by a factor of 10. The average angular contribution to c-axis strain is

obtained by performing a linear fit to this data, is 0.51 ±0.05, while the bond

length contribution is 0.46 ± 0.05. This shows that the c-axis deformation is

roughly equally distributed between these two modes, not a 10 to 1

partitioning. This behavior was also reported by Wool 17, and is consistent

with observed spectral line shifts.
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As a check on this behavior, the modulus for PE was recalculated for

two constrained cases: one in which the angles were held fixed so the c-axis

strain could only come from changes in the bond length, and one in which

the bond lengths were held fixed so that c-axis strain could only come from

0 changes in the bond angles. The potential curves for these two cases are

shown in Fig 9. The difference between these two potentials is seen to be

small. The bond extension modulus obtained is 525 GPa, and the bond

angle modulus is 508 GPa. The difference between these two values is

within the accuracy of the calculation. This result is consistent with the

previous one, that there is a small difference between bond angle

deformation and bond length extension. However, both restricted

deformations are stiffer than the fully free deformation, 520 GPa to 400 GPa.

The substantial difference in the constrained and unconstrained moduli

can be explained by the fact that bond lengths and bond angles are not

independent variables in a quantum mechanics calculation, but are

manifestations of the minimum energy electronic structure of a molecule.

Simulations of the X-ray diffraction patterns were also performed as a

check on the strain dependent PE geometries. The crystal structure of PE

is shown in Fig 10. Crystal PE is orthorhombic, Pnam symmetry, with unit

cell dimensions of a=7.417 A, b=4.954 A, and c=2.534 A24. Because there

are two chains per unit cell, the cross sectional area is (a x b) / 2 . The
0

location of the (006) 28 reflection peak of the C6H 12 cluster describes plane

spacing only along the chain axis; becsause an infinite number of

0

4~3



0-

S2.5 3 4JA

b4.954 A

a
7.417 A

0-P o Carbon
o Hydrogen

Figure 10. PE crystal structure. Here c is tsed as the polymer axis.
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Figure 11. Location of 006 X-ray diffraction peak as a function of c -axis strain.
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combinations of bond angles and bond lengths can produce the same

spacing along the chain axis, the (006) peak location alone cannot be used to

infer information about PE deformation. The location of the (006) reflection

as a function of strain is shown in Fig 11. The modulus can be calculated

from the relation

~Astress

d (12)

where

d =X (X-ray)

2 sin( 20) (13)
2

The X-ray modulus calculated for PE is 400 GPa, which is consistent with

the modulus calculated from the second derivative of the AM1 potential.

Since the first derivative of this potential is used to define the stress curve,

the X-ray simulation is really just a consistency check, not an independent

0 calculation of the modulus.

Comparisons with Spectroscopy

The calculation of the vibrational spectra of a PE oligomer is more

complicated than the spectra of a PE polymer chain because the number of

degrees of freedom is much larger in an oligomer than an infinite, periodic

chain. A gas phase molecule with n atoms has 3n - 6 vibrational modes.

Thus the C6H 14 oligomer used for comparisons with ab-initio calculations
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has 54 (3x-6) vibrational modes in its spectra. The infinite PE single chain

has 14 (3x6-4) genuine vibrations corresponding to the six atoms in the

C 2 H 4 repeat unit, where three translations and one rotation about the chain

axis do not result in vibrations. 14 Many of the vibrational modes in the

oligomer are nearly the same, but because the oligomer is finite, the

energies of these modes are not degenerate as they are in the infinite

polymer. The experimental and calculated vibrational frequencies for the

C6H 14 oligomer are listed in Table 3. Both the observed frequencies and

valence force field (molecular mechanics) calculated frequencies are taken

* from Snyder and Schachtschneider .28, 29 The behavior of the vibrational

spectra of the n-CH2 series is also thoroughly discussed in these references.

It is seen that the valence force field calculation agrees very well with the

observed spectrum, which is not too surprising since this approach uses

force constants which are obtained from spectra. The SE calculated

frequencies tend to be systematically higher than observed. The ab-initio

calculated frequencies agree better with the observed frequencies; however,

the agreement is not as good as can be obtained using ab-initio methods

because electron correlation was not included in this calculation. EvenI

without correlation, this ab-initio calculation required in excess of 250

hours on an Elxsi mini-supercomputer, while the SE calculation only took

about 16 minutes on a Silicon Graphics workstation.

4
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TABLE 3

COMPARISON OF OBSERVED AND CALCULATED C 6 H 1 4

VIBRATIONAL FREQUENCIES

OBSERVED [cm -1] CALCULATED [cm-1]
Valence Force Field SE AM1 Ab-Initio

-- 61 55 -244
94 71 -243

125 101 81
-- 139 156 107
-- 208 160 135
-- 216 166 170

303 336 312
373 370 415 374

-_ 474 509 495
721 723 747 746
-- 740 788 786
798 798 863 895
886 887 954 922

894 989 977
896 896 1013 993
996 1000 1028 1027
1010 1009 1182 1062
1041 1036 1197 1070
1067 1064 1198 1103
1060 1065 1207 1137
1143 1145 1219 1190

1178 1225 1245
1225 1226 1226 1273
1242 1242 1237 1318
-- 1277 1261 1346
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TABLE 3 (continued)

0 OBSERVED [cm -1] CALCULATED [cm-1]
Valence Force Field SE AM1 Ab-Initio

1302 1302 1264 1371
1302 1303 1312 1378

* 1302 1303 1369 1391
1353 1356 1394 1431
--- 1368 1394 1439

1370 1372 1396 1495
1397 1396 1496

1450 1444 1405 1559
1452 1448 1408 1564
1462 1458 1408 1571
1463 1462 1411 1573
--- 1462 1432 1574
1463 1463 1439 1577
-- 1470 1444 1586
1475 1474 1458 1589
2850 2852 3002 3024
2851 2855 3012 3030
--- 2858 3025 3048

2871 2862 3037 3050
2875 2882 3062 3059

0 2885 2882 3062 3061
-- 2915 3064 3062

2907 2919 3064 3073
2920 2924 3078 3093
2934 2929 3088 3103
2965 2965 3098 3137
2965 2965 3107 3137
2965 2965 3157 3148
2965 2965 3157 3149
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Using the cluster method, the spectra is calculated as though the cluster

represented one repeat unit of a polymer. Thus, for PE, the cluster method

assumes that the repeat unit is C6H12 and not the correct C2H 4. Thus 51,

3n-3, vibrational frequencies are calculated (the mode corresponding to

rotation around the chain axis is not discarded in the SE calculation). If a

one repeat unit cluster were long enough to meet the criterion for

noninteraction for the cluster method discussed earlier, the calculated

spectra could be more readily matched with the measured chain spectra.

Since the periodic boundary conditions require that the PE cluster

contain at least 3 repeat units, the vibrational spectrum for the cluster is

much more complicated than the PE polymer spectrum. Many of the

cluster vibrations involve C-H bends and stretches, which should not be

* very sensitive to changes in the backbone structure of PE caused by strain,

and will have a minor effect on the chain modulus. In order to make the

analysis tractable (for this study), the strain dependent shift of only those

vibrational modes which are directly involved in backbone deformation

(C-C stretch modes) and can be unambiguously matched with observed PE

chain vibrational modes (by matching normal coordinates ) will be

discussed in detail.

In the MOPAC calculation, one specifies the length of the (PE) cluster,

thus one calculates the strain dependent properties of the cluster, here the

strain dependent frequency shifts. Experimental frequency shifts are

reported either as a function of strain or stress, but typically do not report

stress-strain curves. The MOPAC calculated strain dependent frequency
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shifts can be converted to stress dependent shifts using the calculated force

curve (first derivative of the heat of formation potential) to determine the

proportionality between calculated strain and stress.

Figure 12a shows the stress dependent frequency shift of the two

symmetric Raman active C-C stretch modes in the 3 repeat unit PE cluster.

(In the infinite chain these modes are degenerate.) The observed

equilibrium (zero strain / zero stress) frequency for this mode is 1059 cm-1,

while the SE calculated frequency is 1157 cm- 1. The calculated shift of

these lines is linear out to a stress of 14 GPa (4% strain) with a slope of -5.86

cm-1 / GPa (- 23.3 cm-1 / % strain). Fig 12b, reproduced from reference 15,

shows the measured stress dependent shift of this C-C stretch mode in

ultra-oriented PE film. Wool19 states that measured shift in the low stress

region is considered more representative of the value obtained under the

assumption of uniform stress on the chains. Deviation from linearity in the

calculated stress dependent shift is not observed because stress is

(inherently) uniformly applied in the calculation independent of the

amount of stress applied. Because strain is proportional to stress, the fact

that the calculated stress dependent frequency shift is 0.52 times the

measured shift means that the calculated strain dependent frequency shift

is 1.92 (1 / 0.52) larger than the strain dependence of the measured

frequency shift.

Figure 13a shows the calculated stress dependent frequency shift of the

asymmetric C-C stretch modes in PE. Because this is an asymmetric

stretch, only one frequency is present with the correct normal coordinates.

51



1160-
0

1140- .

E
1120 9

S1080-

*

p11110 1

1059 cm"

IW

108057-

0~ *0

(b) 0 .1 0.2 .3 Q4 0.5
Stre (GP)

Figure 12. PE asymmetric C-C stretch mode stress dependent shift (a) AM1

calculated (b) experimental. The calculated stress dependent shift is roughly
• one-half the experimental shift, which means the calculated strain dependent shift

is roughly twice the experimental

52



++ +

%1220 +

.. 0 +

E +
1210 - +

+
) +

cc
: 1200+

* 0 +
0)1190 -+C +

LU +

(a) o 2 4 10 12

I I

0 1128-
1127 cm'

11
1 -5.9 cm4i/GPo

*
11It26,-

(b)
0 (.b 02 .3 .4

Stress(GPo)

Figure 13. PE symmetric C-C stretch mode stress dependent shift (a) AM1
calculated (b) experimental. The calculated stress dependent shift is roughly

* one-half the experimental shift, which means ihe calculated strain dependent shift
is roughly twice the experimental

0

53

0



0

The experimental zero strain frequency for this mode is 1127 cm-1, while

the SE calculated frequency is 1224 cm-1 The calculated shift of this mode is

- 3.3 cm-1 /% strain, -2.88 cm-1 / GPa. Figure 13b,reproduced from

reference 14 shows a measured shift of -5.9 cm-1 /GPa. The calculated

0 strain dependent shift rate is 2.04 times the observed strain dependent shift

rate.

A possible explanation for the difference in the calculated and observed

0 strain dependent frequency shifts might be that the measured bulk strain is

not be completely taken up in c -axis chain strain. If the stress applied to

PE were roughly equally partitioned between chain slippage and chain

extension, only one-half of the bulk strain would be c-axis strain, and the

calculated frequency shifts would agree with the measured shifts. This

hypothesis was investigated by calculating the interaction energy of two PE

chains (inter-chain friction) packed in the crystal structure. The program

Cerius 30 for Silicon Graphics workstations was used for this crystal

simulation. A standard Lennard-Jones potential with an interaction

radius of 5A was used to describe the non-bonded interactions between two

PE chains. The equilibrium geometry obtained from the AM1 calculations

was used for the PE chains. One PE chain was moved along the c-axis of

the crystal with respect to the other, and the change in energy monitored.

As expected, the interaction energy increased as the chains were slipped

against each other; the energy was periodic with a period equal to the

repeat unit length. The energy barrier to chain slippage was found to be

approximately 2% of the chain axis barrier. This means that under strain
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amorphous PE will initially deform by chain slippage rather than by

extension of the chains themselves. (This behavior has been observed in

unoriented PE. 31) Because the resistance to chain slippage is so much

smaller than the chain resistance, equipartition between inter and intra

molecular potentials cannot be invoked to explain the discrepancy between

the measured and calculated frequency shifts.

Since the discrepancy in frequency shifts cannot be explained by inter-

molecular interactions, the next logical step is to investigate the validity of

the intra-molecular interactions, i.e., the bonding potentials. Wool 17

performed a analysis of the strain dependent frequency shifts of PE. In

addition to very thorough measurements, he also calculated PE

deformation using a molecular dynamics model. The Morse potential

shown in Figure 14 was used to describe the C-C bonds in PE. In this

reference, the source for the parameters in the C-C Morse potential is not

listed, however, these parameters are essentially identical to those used in

0 similar models found in other references 24 . Because Wool's model

matches both the equilibrium frequencies and the strain dependent

frequency shifts for all the PE chain vibrations which were intense enough

to be reliably measured, this description of the C-C bond in PE is judged to

be accurate.

The C-C bond strain potential which arises from the AM1 parameters

was obtained by varying the C1-C2 bond distance in the PE cluster shown in

Fig 5 and allowing all the other variables to optimize. This potential is also

shown in Fig 14 from -25 % to 50% strain. In this figure it is seen that the

55



120-

00-

10 * MOPAC C-C Potential
* 

- Morse C-C Potential
0 80-

C- 060-

~40-

20-

-20 0 2 4

0Strain (%9/)0

Figure 14. Comparison of Morse and AMi1 C-C strain potentials.

56



14-

12 MOPAC C-C Potential
-- Morse C-C Potential

-610-E

6-
4)

4-

2-

0-

-10 -5 0 5 10
Strain (%)

Figure 15. Comparison of Morse and AM1 C-C strain potentials:
expanded view about equilibrium.

57



AM1 C-C potential is systematically higher in energy than the Morse

potential. An expanded view around equilibrium is shown in Fig 15, which

shows that there is a significant difference in the two potentials even for

small variations about equilibrium. The second derivative of the AM1 C-C

potential at equilibrium is 580 ± 20 Nt / m, which is 31% stiffer than the

second derivative of the Morse C-C potential at equilibrium, 440 Nt / m.

The effective CCC bond angle potential can be obtained by varying angle

C1-C2-C3 (Fig 5) and allowing the rest of the cluster to optimize. A value

of 1.566e-18 Nt m / rad2 was obtained for the angle bending force constant

calculated by the AM1 Hamiltonian. A force constant for a CCC angle bend

of 1.084e-18 Nt m/rad2 was used in reference 27. Again, the value from

AM1 is approximately 30% higher than has been empirically found to

predict the correct frequencies and frequency shifts.

Wool reports a -alue of 267 GPa for the chain modulus of PE based on his

measurements and modelling, which differs by -10% from the "accepted"

value of 300 GPa for PE. The AM1 result was 400 GPa, which differs from

the "accepted" value by +33%. The frequency shifts predicted by AM1 are

roughly a factor of two larger than experimentally observed. The Morse

potential used by Wool has second and third derivatives that agree with

experiment. The C-C bond potential generated by the AM1

parameterization is judged to be inaccurate because its derivatives are

larger than experimentally observed, hence the modulus, which depends

directly in the second derivatives of the potentials, is judged to be

inaccurate; however it is premature ') assign a quantitative error in the
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V POLYDIACETYLENE RESULTS AND DISCUSSION

Substituent Effects

Polydiacetylene (PDA) is one of a few polymers which can be

polymerized as a single crystal. The backbone chain structure, shown in

figure 16, is simple; however, the substituents (indicated by R in figure 16),

are typically large structures containing up to 30 atoms (including

hydrogens). If one considers a "ball and spring" mechanical model of

PDA, it seems reasonable to assert that the stiffness of the polymer along its

c-axis should be independent of substituent because the substituent spring

(bond strength) is orthogonal to the chain axis. In reality, the bond between

the backbone and the substituent will affect the bonding on the backbone,

but unless the backbone is bonded to a halogen atom, the influence on

backbone bonding should be small. One could argue that the conjugated

PDA backbone determines the chain stiffness; however, because the

substituent's size determines the crystal packing density hence the unit cell

cross sectional area, substituent geometry ultimately determines the

modulus.

If this argument were valid, the PDA derivative which has the

substituents which give the best crystal packing (highest density) would

have the largest modulus. Table 4 shows a comparison of 4 PDA variants

whose chemicql formulae are listed in figure 16. (PDA derivatives are

commonly referred to by only the substituent type; for clarity in this thesis I

will add the abbreviation PDA. For example, PDA-EUHD referreA to

herein is referred to simply as EUHD in the literature). PDA-EUHD,
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Figure 16. PDA backbone structure with formulae for

substituents discussed in the text.
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which has the smallest unit cell area also has the largest mechanical

modulus. Because all the subtituents listed have a carbon atom bonded to

the backbone their effect on the backbone bonding should be the same. The

last column in Table 4 lists the product of the modulus and the derivative's

cross sectional area, the chain restoring force which is the chain stiffness

times the repeat unit length. The restoring force is seen to be independent

of substituent to within experimental accuracy.

TABLE 4

COMPARISON OF PDA DERIVATIVE PROPERTIES32

Derivative Area [A1 Modulus [GPa] Restoring Force [10-N-t1

PUHD 97.4 45 M 4.38

TSHD 95.5 43 M 4.11
50 R 4.75

DCHD 106.3 45 M 4.78
47 B 4.95

EUHD 65.1 61 M 3.97
74 R 4.79

M: Mechanical measurement of modulus
R: Raman measurement of modulus from acoustic velocity in

polymer
B: Brillioun measurement of modulus

Ref 32 does not give the uncertainties in the modulus measurements which

are taken from a number of experiments (which are referenced in this

paper), but an uncertainty of± 5 GPa is typically quoted in similar
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experiments.

The weak dependence of PDA modulus on substituent is very important

for this study because for every 4 carbon atoms in the backbone repeat unit,

there are as many as 50 substituent atoms. The vast majority of the

computation time would be spent optimizing the geometry of the

substituents, and the number of calculated vibrational frequencies would

grow very large and needlessly complicate the analysis of the spectrum

since the substituent frequencies would be interspersed with the strain

dependent backbone frequencies. More importantly, since the

computational cost scales as n2 (number of electrons), the MOPAC

calculations would have been too slow to be useful. Instead of calculating

the real polymers, PDA with hydrogens as substituents was considered in

the majority of the work performed in this study. This is a good model for

comparison because molecular mechanics models of PDA derivatives often

treat the substituents as a single atom with a mass equal to the mass of the

entire substituent in order to obtain a good match of the vibrational coupling

to the backbone. 33,34,35,36 In order to investigate isotope effects, MOPAC 5.0

allows the vser to specify the masses of the atoms, e.g., specifying a

hydrogen atom with mass 2.0 changes the hydrogen to deuterium. MOPAC

5.0 does not restrict the user to naturally occurring isotopes; an arbitrary

mass can be assigned to any atom. This flexibility was exploited to match

the empirical models by attaching very heavy hydrogen atoms to PDA. For

example, to match the model of PDA-HHD used in reference 33, mass 31.26

atomic mass units (amu) and 15.12 hydrogen atoms were used as
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substituents. The mass of the atoms does not affect the calculated

0 minimum energy geometries because in the Hartree-Fock method the

solution of the electronic wavefunctions is independent of the nuclear

wavefunctions. This was verified for MOPAC 5.0 by calculating the

optimum geometry of a simple molecule while varying the masses of the

hydrogen atoms in the molecule. Even with mass 106 amu hydrogen, all of

the variables, bond lengths, angles, etc, were exactly the same (to machine

precision).

Molecular Structure

An SE polymer molecular structure calculation on PDA has not been

previously performed, so the first step in this study was to determine the

minimum cluster length. The minimum cluster length was determined by

examining the heat of formation per repeat unit and c-axis length as a

function of the number of repeat units in the cluster. The results are

summarized in Table 5. These results indicate that the normalized heat of

formation and c-axis length reach their asymptotic values with a 4 repeat

unit cluster, which is used for all polymer calculations. For comparison,

Table 6 lists similar results for the PDA oligomer sequence. The oligomers

demonstrate behavior similar to the cluster sequence. The decrease in heat

of formation per repeat unit from 1 to 2 occurs because an extra carbon is

included in the one repeat unit case to match the polymer c-axis.
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TABLE 5

PDA CLUSTER SERIES

n: C4H2  Heat of AI-I / n Cluster Repeat Unit
Formation (AHf) [kCals/mole] Length [Al Length [A]

[kCals/mole]

* 1 77.68 77.68 4.708 4.708
2 127.21 63.60 9.753 4.876
3 186.51 62.17 14.634 4.878
4 247.94 61.98 19.505 4.876
5 309.83 61.96 24.382 4.876
6 371.76 61.96 29.282 4.880

*7 433.66 61.95 34.122 4.874

TABLE 6

PDA OLIGOMER SERIES

Formula n Repeat Units A1-I [kCals/mole] AHf (n) - A1-1 (n-i1)
IkCals/molel
C5H6  1 56.30 --

*C 8Hg 2 95.92 39.62
C12H10  3 158.55 62.63

C1H24 220.59 62.04
C2H45 282.53 61.94
C2H66 344.46 61.93
C2H87 406.40 61.94

0
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A 4 repeat unit oligomer of PDA with hydrogen substituents is too large

even for a low level ab-initio calculation. A smaller PDA oligomer shown in

figure 17 was used for comparisons between ab-initio and SE calculations.

Also listed are geometric values from a 4 repeat unit cluster with methyl

(CH 3 ) substituents and an experimental X-ray diffraction determination of

PDA-THD37.

There are several notable features in the geometry of this PDA oligomer.

First, the minimum energy geometry occurs with the end carbons both

above (cis) the plane of the central acetylene group, while in the polymer

successive repeat units are always on opposite sides of this plane (trans).

In the oligomer with hydrogen substituents, the barrier to rotation was

calculated and found to be very low (thermal), which means that the ends of

* this oligomer would freely rotate at room temperature. Steric interactions

with larger substituents would restrict the rotation of the oligomer;

however,in the AM1 cluster calculations with hydrogen substituents, the

0 PDA cluster geometry always optimized in the trans configuration, which

is observed experimentally for the PDA polymer. This free rotation is a

significant end effect in the oligomer, and complicated attempts to calculate
0

the modulus on a two repeat unit oligomer. (The rationale for these

attempts is discussed later in this chapter.)

There are significant differences in the backbone C-C bond lengths

between PDA and PE. The PDA C-C single bond is considerably shorter

than both the C-C single bond in PDA, and the C-C single bond to the carbon

atom in the substituent. This occurs because the backbone "single" C-C
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bond is really a mixture of a single C-C bond and a triple C-C bond. This

bond is somewhere between a pure C-C single bond with a length of 1.53 A

and a pure C-C double bond with a length of 1.326 A. The AM1 calculation

predicts that the C-C double bond (C1-C2) and C-C single bond (C2-C3) in

PDA have nearly equal lengths; the ab-initio calculation shows these bond

lengths to differ measurably, which agrees much better with experiment

than the SE results. The error in these AM1 bond lengths is larger than the

average error in bond lengths as listed in Table 2, which may show a

limitation in the AM1 parameterization for conjugated carbon bonds. The

C-C triple bond lengths calculated by AM1 and ab-initio both agree very

closely with experiment. The bond angles calculated by AM1 are within the

published accuracy of this method. An earlier MNDO calculation on a one

repeat unit PDA oligomer with methyl substituents showed results which

were more consistent with the experimentally observed geometry. 38 A

MNDO calculation on the oligomer shown in Fig 17 was performed in this

study and found to produce approximately the same results as the AMI

calculation.

Figure 18 shows a comparison of the distribution of strain within the

PDA repeat unit as a function of c-axis strain. The bond angle is seen to

show the largest relative change with strain. Initially the single and

double C-C bonds deform at the same relative rate, but at strains greater

than 4% the single C-C bond begins to change more rapidly. The triple C-C

deforms very little at low strains and begins to deform linearly for strains

above 2%. Overall, this behavior is consistent with what one would expect
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based on the anticipated stiffness of earh mode, the triple bond being the

strongest, the angular resistance being the weakest; however, it is

interesting that the relative deformation of the PDA single and double C-C

bonds is roughly equal. This result may be explained by the fact that these

are not pure double and single bonds. The AM1 calculated deformation is

consistent with the experimentally reported deformation of PDA-HDU,

(R=CH 2OCONIHC6H5 ).39

Modulus Calculations

The strain dependent heat of formation curves for a 4 repeat unit PDA

cluster is shown in figure 19 from -5% to 10 % strain. Two cases are shown

in this figure, one with hydrogen substituents and one with methyl

substituents. As is seen, these potentials are essentially identical, which

reinforces the argument that PDA chain stiffness is largely independent of

substituent. Results below -5% were not obtained because the specification

of the PDA geometry caused the optimization to fail if a bond torsion angle

rotation occurred. Numerous alternate geometry specifications were

attempted to work around this problem, but none were successful. Since

experimental data below -4% have not been reported, this issue was not

pursued. The chain stiffness obtained by the same procedure used for PE is

42 Nt/m. The AM1 calculated modulus for the PDA variants described

before are listed in Table 7 along with the measured bulk values (cross

sectional area are taken from Table 4). As was seen in PE, the AM1

calculated modulus is substantially higher than the measured values.

Better agreement was anticipated because PDA's structure is much closer
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to the ideal chain simulated in these calculations. As was required for PE,

9 other predictions of the AM1 calculation need to be compared with

experiment to assess the accuracy of this method.

* TABLE 7

COMPARISON OF EXPERIMENTAL AND CALCULATED PDA CHAIN

MODULUS

PDA Experimental Modulus [Gpa] 32 AM1 Modulus [GPa]
Derivative

PUHD 45 M 86

TSHD 43 M 50 R 88

DCHD 45 M 47 B 79

EUHD 61 M 74 R 129

In order to discover how much of the modulus error comes from the

* approximations made in the AM! method, a direct comparison of the

strained geometry heat of formation calculations between the SE and ab-

initio methods was planned. The ab-initio codes which was available for

this study, Gaussian88 and Gaussian90, do not have provision for the use of

periodic boundary conditions to simulate an infinite chain, so this

comparison had to be limited to an oligomer. Because of the memory

constraints, the maximum practical oligomer which could be used in the

ab-initio calculation was only two repeat unit long. This oligomer is shown

in figure 20. Calculations were first performed using the SE method to see
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if th,' effect of strain on a two repeat unit oligomer was representative of the

* infinite chain. Two interesting results were obtained from the SE

calculations. First, the vector direction in which strain is applied affects

the optimized geometry. Strain is applied in an oligomer by displacing the

* 1"end" atoms (symmetrically) a small distance away from their equilibrium

location and holding them fixed. The rest of the oligomer geometry is

allowed to optimize under this constraint. Because the atom locations are

specified by a bond distance and angle, successive displacements take place

along an effective strain vector. Several vector directions which were used

are shown in figure 20. Because each successive atom displacement is

very small, the actual position where the atom is placed differs minutely

depending on the strain vector. Surprisingly (at least to the author), the

heat of formation and optimized geometry was found to be very sensitive to

the strain vector. In order to match the strain direction in the cluster

method, atom displacement was specified along vector III, which is along

the polymer c-axis. Unfortunately, the results of this calculation showed

that a two repeat unit oligomer was dominated by end effects, and the

comparison to tle infinite chain was invalid. Therefore, the ab-initio

comparison was not performed.

Comparisons With Spectroscopy

The accuracy of the modulus calculation of PDA, as for PE, can be

irivestigated by comparing the measured and AM1 calculated strain

dependent vibrational frequency shifts. The large, 4 repeat unit cluster

required for PDA made this analysis more difficult because the normal

74



vibrational modes for a 4 repeat unit cluster are very different than the

vibrational modes for the infinite chain. Because the substituents couple

into some of the backbone chain Raman active modes, it is difficult to

accurately match these modes with the hydrogen substituents. The

experimental spectrum is complicated because some frequencies that arise

solely from the substituents are interspersed with the chain modes. The

substituent frequencies do not shift with strain, so they don't provide any

information on the accuracy of the strain dependence of the AM1

calculation. After a thorough analysis, only two calculated vibrational

frequencies could be unambiguously, reliably matched with the reported

spectra. The normal coordinates of these modes are shown in figure 21.

34,36 These measurements have been performed on a variety of PDA

substituents of varying degrees of polymerization, so there is considerable

spread in the reported frequency shifts. 40

The strain dependent frequency calculations were first performed using

mass 1 amu hydrogen substituents, which produced an unrealistic

spectrum because the coupling of the light mass hydrogens to the backbone

vibrations was too strong. When the calculation was performed with mass

32 hydrogens, the backbone coupling better matched the experiment and

the spectrum was easier to interpret. Interestingly, the frequencies of the

two strongly strain dependent Raman modes were found to be independent

of the hydrogen mass. A possible problem with approximating the

substituents with heavy hydrogen atoms is that the bond length and the

force constant of the atom bonded to the backbone are wrong, which might
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affect the vibrational coupling to the backbone. This possibility was

investigated by performing a frequency calculation on PDA with methyl

substituents, which gives the C-C bond to the backbone found in all the PDA

derivatives, but changing the mass of the carbon atom on the methyl group

to 32 amu. The backbone frequencies described before did not change. This

was a useful result for this study because the calculation time for a methyl

subs.ituted PDA cluster is very much longer than hydrogen substituted

PDA because the methyl substituted cluster has 27 more (hydrogen) atoms.

The strain dependent frequency shift of the backbone frequency

corresponding the mode shown in figure 21a is shown in figure 22.

Because a four repeat unit cluster was used in the calculation, there are

four frequencies in the cluster which correspond to the vibrational mode in

the infinite chain. The difference in these frequencies is very small, which

shows that they are nearly degenerate. The calculated frequency shift as a

function of strain shows more spread than the PE results, which is a

limitation of the accuracy in calculating the frequencies on such a large

cluster. The calculated strain dependent frequency shift of this mode is

40±3 cm-1 / % strain, which is the average of the four lines. The

experimental value of the frequency shift varies, but the largest reported is

20 ± 0.5 cm- 1% strain.32 The experiment that measured the largest shift

was performed on PDA samples with best morphologies, which implies

that this shift is more representative of the defect free crystal. Galliotis et

al 2l list a number of measured values for the shift of two backbone Raman

active modes for a range of PDA derivatives of varying quality, which gives
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an idea of the sensitivity of these shifts to sample preparation. As was

0 found for PE, the calculated frequency shift of this mode is approximately

twice that observed experimentally.

The frequency shift of the mode shown in figure 21b is shown in figure

* 23. There are only 3 frequencies in the 4 repeat unit cluster for this mode

because it involves displacement of the carbons along the double bonds, and

there are only 3 double bonds in the cluster. There is considerable spread in

these calculated strain dependent frequencies; however, the average

calculated frequency shift of this mode is 15 cm-1 / % strain, which is

approximately twice the highest reported value for the shift of this model5 .

As was the case for PE, it would be informative to compare the potentials

generated by AM1 for the individual bonds in PDA with Morse potentials;

however, Morse potential parameters have not been reported for these

bonds. Because the electrons are not localized to specific atom pairs in

PDA ,it is more difficult to define potentials that accurately describe the

a interaction. The AM1 potentials for the single, double, and triple C-C bonds

in PDA are shown in Figure 24. These potentials are best described by

third order polynomials, which are stiffer than Morse potentials. Instead

of explicitly defining a bond potentials, empirical force constant approaches

for calculating the modulus in various PDA derivatives obtain set of force

constaLs from the equilibrium spectrum, and use a fudge factor to describe

the variation of the force constant with strain. An empirically derived

79

..0.. ....... .... ..... ...



1780 !

070

L,

170

a)

170

1680

Stai

Figure 23. Strain depenedent frequency shifts of the 4 repeat unit PDA
cluster corresponding to the vibrational mode shown in figure 20 (b).

8D



20- +
• +

+

15- + +C-C Single Bond
10- + +10 ++ ++

+ 4

5-+++ +++ ++++ ++

04+++-+++j+++f+ 
+ ++++

0II I I
* 0-

" -15 -10 -5 0 5 10 15

E(0-
+

+. +

+
++0 +..4

+

+'++++- +++

C O- I I ++ ~~++4- +ia'4"IFP4+++++ +I+ I

-15 -10 -5 0 5 1015

25- +

20- +" C-C Triple Bond
15- + ++

+ ++
++

* 10- + ++

5+ 4 + +
+4 "4+4-5- + ++++++#+++++ ++++ ++++

0 - I rII++ +++  I I I

Strain (%) 10 15

Figure 24. Comparison of PDA C-C bond potentials

81



estimate of the force constant variation is 33,34

k=0B

r-A (14)

where A=1.06 A and B = 1.65 x 10-8 Nt. This approximate relation is known

to overpredict the strain dependent frequency shift, which is not surprising

because it predicts the force constant to fall off as l/r, which is slower than

the force constant variation of a Morse potential. An accurate calculation of

the strain dependent frequency shift in PDA has not been reported.

A comparison of the equilibrium force constants obtained from the

second derivatives of the AM1 potentials shown in Fig 24 and those reported

in by Batchelder and Wu is shown in Table 8. As is seen, the AM1 values

for the force constants are considerably higher than those derived from the

PDA spectra. The models from which these PDA experimental force

constants were derived were simplified, so these force constants are not

guaranteed to be unique. Also listed in Table 8 are the force constants for

the corresponding unconjugated C-C bonds calculated by AM. The force

constants for the unconjugated bonds are in a ratio which is close to 1:2:3

for single to double to triple, while in PDA the single and double have

roughly equal strength, each approximately one-half that of the triple bond.
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TABLE 8

COMPARISON OF PDA BACKBONE FORCE CONSTANTS [Nt/m]

C-C Bond AM1 Ref 29 Ref 30 AM1
Type Unconjugated

Single 820 450 560 620 (C2 H 6)

Double 880 550 510 1220 (C2H4 )

Triple 1530 1200 1170 1880 (C2H 2)

The deformation of PDA does not involve only one kind of bond, so a

comparison of the individual calculated and experimental force constants

does not have a direct correlation to the error of the calculated modulus.

However, as a rough comparison, using a simple addition of the bonds

found in the repeat unit, two single C-C, one double C-C, and one triple C-C,

bond, the AM1 calculated sum is approximately 40% higher than

experiment. Because the deformation analysis showed that the change of

the bond angle contributed more to extension along the c-axis than bond

extension, the overestimate of the modulus is less than the 40%

overestimate of the bond stiffnesses.
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V I SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The ultimate mechanical properties of polymers, assuming perfect

morphology, will be limited by the mechanical properties of a single, ideal

chain. The standard approach used to predict the chain moduli of

* polymers, the ubiquitous method of Treolar4l, uses force constants for bond

stretching, bond angle opening, and torsion angle twisting, obtained from

spectroscopy to build up a classical mechanics model of the polymer as a

0 series/parallel combination of ideal springs. Extensions to this approach

incorporate strain dependence (anharmonicity) in the force constants (ref

35, 36 for example). While the method of Treolar has the advantage of being
0

grounded in experiment, it is inconvenient to apply in many situations

because polymer spectra tend to be complex, making the task of

unambiguously obtaining the required force constants very difficult. In

addition, the method of Treolar can only be applied to polymers which have

already been synthesized, i.e., it provides no predictive capability for

* designing polymers with desireable mechanical properties. Likewise,

molecular mechanics is based on situation specific experimental data, and

has a limited predictive capability.

* SE quantum mechanical calculations of polymer mechanical properties

were attempted because the SE method is generic enough to have a

predictive capability, and ab-initio methods at present are too time
0

consuming to be practical for polymers. Moduli values obtained were

systematically (and significantly) higher than experimental values, which

was attributed to morphological imperfections which will be present in any

0
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real material. The goal of this investigation was to explore possible

inaccuracies inherent in the SE method which would contribute to these

discrepancies. The criterion used to make this assessment was the strain

dependent behavior of polymer spectra and strain potentials of individual

* bonds within the polymers PE and PDA, polymers which have been well

characterized experimentally and have relatively simple structures.

At the beginning of this investigation it was anticipated that the SE

method would be valid for some small region around equilibrium (whose

range would be bounded in this investigation) but would be invalid above

(and below) some critical value of strain. This anticipation was based on

the fact that the SE method used in the calculation (as well as most SE

methods) was parameterized to reproduce equilibrium molecular

properties. Almost any physically realistic molecular potential is nearly

harmonic around equilibrium (harmonic approximation of an anharmonic

oscillator) so the extrapolation of equilibrium properties for small

deviations around equilibrium is valid. What was found in this

investigation is that the force constants obtained from the SE method, even

at equilibrium, are too high. The individual strain dependent bond

potentials produced by the SE method were found to be significantly stiffer

than Morse potentials used to describe these bonds; the Morse potentials

used in the comparison have been shown to accurately describe the

anharmonicity and reproduce strain dependent spectral shifts in PE.17 As

a group, the SE generated potentials were found to be well fit by cubic

0 potentials, which is essentially a first order correction to a harmonic
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potential. Because a polymer has many deformation modes, the

overprediction of bond stiffiess is not necessarily equal to the overprediction

of polymer modulus.

The consequences of the SE prediction of bond potentials is illustrated in

Figure 25. Figure 25a shows a comparison of Morse, harmonic, and cubic

potentials which have been corstructed to have the same second derivative

at equilibrium. The Morse potential is the C-C potential from Wool' 7 ; the

harmonic and cubic potentials are least squares fits to this Morse potential.

Figure 25b shows the first derivative of these potentials. which is the

molecular stress-strain curve. Figure 25c shows the second derivative of

these curves, which has the same shape as the modulus curve for this

potential because the second derivative and modulus differ only by

constants. The second derivative of the harmonic curve is a constant; an

ideal harmonic material would have a modulus which is independent of

strain (and would never fracture). If the bond is accurately described by a

cubic potential, the modulus linearly decreases with tension and increases

with compression. The second derivative of the Morse potential initially

decreases faster in tension than the cubic, and falls off slower at strains

above 15%. The Morse potential's second derivative increases faster than

the cubic in compression. However, for small values around equilibrium,

the second derivative of the Morse potential can be well described by a linear

fit, so it could be difficult to discriminate between Morse and cubic

potentials since experiments are limited to small strains (by bulk failure

mechanisms).
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What are the possible reasons for the observed behavior of the SE

method? First, the SE method was not parameterized with data that give

information about the derivatives of the molecular potentials, even at

equilibrium. Thus the inaccuracy of the predicted stiffness away from

equilibrium is not surprising. A more basic limitation may be the fact that

SE methods are subject to the Hartee-Fock limit. It is necessary to include

electron correlation in ab-initio calculations to obtain good agreement with

experimental spectra, i.e., derivatives of the molecular bond potentials. 6

Electron correlation is known to reduce bond stiffness; bonds calculated at

.he Hartree-Fock limit are found to be systematically stiffer than

experiment, which is consistent with the results of the SE calculations

performed in this investigation. Since mechanical properties of polymers

ultimately depend on derivatives of the molecular bond potentials, the

accuracy of a calculation of polymer chain modulus can be judged on the

basis of the method's ability to match these derivatives on systems where

experimental data exists.

SE calculations produce usefully accurate results for those properties

against which they have been benchmarked; the AMI parameterization did

not include the spectroscopic information which would give better values

for the equilibrium force constant and a more accurate description of the

behavior of the system away from equilibrium. For the foreseeable future,

ab-initio methods will remain too computationally expensive to be practical

for the prediction of the mechanical properties of polymers. In order to

improve the SE calculations of mechanical properties of polymers, one can
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parameterize the method to reproduce spectroscopic data, which will give a

better anchor for bond stiffness. Scaling procedures to improve force

constants calculated at the Hartree-Fock limit have been developed for

some situations. 9 It may be possible to incorporate a similar procedure in

a SE paramterization, and avoid the computational cost of ab-initio

methods. An extensive parameterization could be avoided because nearly

all polymers of interest contain only carbon, hydrogen, oxygen, nitrogen,

sulfur, and phosphorous, which would reduce the cost of such an effort.

The synthesis to high molecular weight (long chains), purification, and

processing of a new polymer is a long and expensive process. The accurate

computational prediction of the ultimate mechanical (and other) properties

of polymers is a desireable goal because it can provide guidance on which

new polymers possess the best potential for high modulus and strength.
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